
Inspiring people to
share

Welcome to the

Hitchhiker's Guide to FLOW3

Inspiring people to
share

Welcome to the

Hitchhiker's Guide to FLOW3

Inspiring people to
shareHitchhiker's Guide to FLOW3

Overview

Hello FLOW3!

Configuration

Bootstrap

Packages

Components

Caching

More

Inspiring people to
shareHitchhiker's Guide to FLOW3

Getting Started

Hello FLOW3!

The Hello World example based on FLOW3's
Model-View-Controller Framework.

Inspiring people to
shareHitchhiker's Guide to FLOW3

Getting Started

5 Easy Steps

1. Download FLOW3

2. Adjust write permissions

3. Create a new package

4. Create a default controller

5. Create a default action

Inspiring people to
shareHitchhiker's Guide to FLOW3

Getting Started

1. Download FLOW3

Just checkout the FLOW3 distribution via
Subversion:

svn co http://svn.typo3.org/FLOW3/dist/trunk/

Inspiring people to
shareHitchhiker's Guide to FLOW3

Getting Started

2. Adjust write permissions

Make sure that the public folder is writeable for
the webserver's user:

sudo chown -R robert:www public/
sudo chmod -R 770 public/

Inspiring people to
shareHitchhiker's Guide to FLOW3

Getting Started

3. Create a package

In order to create a new package, just create
a new folder within the Packages directory.

Inspiring people to
shareHitchhiker's Guide to FLOW3

Getting Started

4. Create a Default Controller

1. Create a "Classes" directory

2. Create a "Controller" directory

3. Create a class file

4. Extend FLOW3's action controller

Inspiring people to
shareHitchhiker's Guide to FLOW3

Getting Started

5. Create Default Action

Inspiring people to
shareHitchhiker's Guide to FLOW3
Inspiring people to
shareHitchhiker's Guide to FLOW3

Configuration

Inspiring people to
shareHitchhiker's Guide to FLOW3
Inspiring people to
shareHitchhiker's Guide to FLOW3

Configuration

Inspiring people to
shareHitchhiker's Guide to FLOW3

Configuration

Configuration Format

The default configuration format is PHP

Configuration options reside in a configuration object

The configuration object provides array access and a fluent interface

Configuration options are self-documenting

Inspiring people to
shareHitchhiker's Guide to FLOW3

Configuration

Configuration Format

Inspiring people to
shareHitchhiker's Guide to FLOW3

Configuration

Configuration Types

FLOW3 distinguishes between different configuration types for
different purposes:

FLOW3 - reserved for FLOW3 configuration

Package - package related configuration

Component - configuration for components, including
Dependency Injection

Routes - special configuration for defining MVC routes

Settings - mainly user-level settings for any purpose

Inspiring people to
shareHitchhiker's Guide to FLOW3

Configuration

Configuration Types

Inspiring people to
shareHitchhiker's Guide to FLOW3

Configuration

The Cascade

Each package defines possible configuration options by setting
default values

Default configuration can be altered by user-defined configuration
files

User configuration can only modify existing configuration options

Modifying non-existent configuration options results in an error

Inspiring people to
shareHitchhiker's Guide to FLOW3

Configuration

Application Context

An application context is a set of configuration for a specific context

FLOW3 is shipped with configuration for these contexts:

Production

Development

Testing

Staging

FLOW3 is always launched in one defined context

Additional, user-defined contexts are possible

Inspiring people to
shareHitchhiker's Guide to FLOW3

Configuration

Application Context

Configuration defined in the top level of a Configuration directory is
the base configuration

Specialized configuration for application contexts reside in
subdirectories named after the context

Application context configuration overrides the base configuration

Inspiring people to
shareHitchhiker's Guide to FLOW3

Configuration

Application Context

Inspiring people to
shareHitchhiker's Guide to FLOW3

(or: how to launch a rocket)Bootstrap

Inspiring people to
shareHitchhiker's Guide to FLOW3

Bootstrap

Public/index.php

This file is the default main script

It launches FLOW3 in the Production context

The webserver's web root should point to the Public directory

Inspiring people to
shareHitchhiker's Guide to FLOW3

Bootstrap

Public/index_dev.php

This script is used for development

It launches FLOW3 in the Development context

More scripts like this can be created for additional contexts

Inspiring people to
shareHitchhiker's Guide to FLOW3

Bootstrap

Public/index_dev.php

Don't forget to run FLOW3 in Development context while you're
developing because

component configuration is cached in production mode, so new
classes won't be recognized

resources are cached in production mode, so changes won't be
detected

and many more things might be cached which lead to unexpected
errors if you change some code in your package

Inspiring people to
shareHitchhiker's Guide to FLOW3

Bootstrap

$FLOW3->run()

run() is a convenience method which

initializes the FLOW3 framework

resolves a request handler

handles and responses to the request

Inspiring people to
shareHitchhiker's Guide to FLOW3

Bootstrap

$FLOW3->initialize()

The initialization process is divided into different stages:

Initialize FLOW3

Initialize the packages

Initialize the components

Initialize the settings

Initialize the resources

The configuration for each level can't be changed once the initialization level is reached

Inspiring people to
shareHitchhiker's Guide to FLOW3

Packages

Inspiring people to
shareHitchhiker's Guide to FLOW3

Package Manager

Like the good old Extension Manager - but without UI yet

Scans the Packages directory for packages

Will connect to the FLOW3 Package Repository

Package file format is just plain .zip

Will provide access via Web / CLI and offer Web Services

Packages

Inspiring people to
shareHitchhiker's Guide to FLOW3

Packages

Meta/Package.xml

Contains meta information about a FLOW3 package

The format is defined by a RelaxNG schema:
http://typo3.org/ns/2008/flow3/package/Package.rng

The Package.xml will soon be mandatory

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Components are re-usable, properly encapsulated objects

The lifecycle of a component and the combination of active
components is managed by the Component Manager

All classes in the TYPO3 context are considered as components

Components are configurable

Components

Inspiring people to
shareHitchhiker's Guide to FLOW3

Class ≙ Component

Classes are automatically registered as components if

they reside in the Classes directory of a package and

their name follows the FLOW3 naming conventions

Components

Inspiring people to
shareHitchhiker's Guide to FLOW3

Example

Components

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Playing with building blocks

The combination of components used is configurable
(orchestration)

The less components know about each other the easier it is to reuse
them in a variety of contexts

Create your own LEGO set by creating cleanly separated, decoupled
components!

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Component Dependencies

Components seldomly come alone

Components depend on other components which depend on other
components which ...

Problem:

Components explicitly refer to other components:
$phoneBookManager = new PhoneBookManager

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Dependency Injection

A component doesn't ask for the instance of another component but
gets it injected

This methodology is referred to as the "Hollywood Principle":
"Don't call us, we'll call you"

Enforces loose coupling and high cohesion

Makes you a better programmer

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Constructor without Dependency Injection

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Component with Constructor Injection

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Component with Setter Injection

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Autowiring

FLOW3's framework tries to autowire constructor arguments and
arguments of inject* methods

The type of the component to be injected is determined by the
argument type (type hinting)

Autowiring does not work with Setter Injection through regular
setters (set* methods)

Dependencies are only autowired if no argument is passed explicitly

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Fetching components manually

Although Dependency Injection is strongly recommended, there
might be cases in which components need to be created or retrieved
manually

Use the getComponent() method in these cases.

$component = $componentManager->getComponent($componentName, $arg1, $arg2, ...);

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Component scope

Component objects always live in a certain scope

Currently supported scopes are:

Singleton - Only one instance exists during one script run

Prototype - Each getComponent() call returns a fresh instance

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Component scope

The scope can be defined through

an annotation in the component class (recommended)

through the component configuration in a Components.php file

The default scope is "Singleton"

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Component scope

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Creating Prototypes

Dependency Injection can be used in almost any case, there's no
need to call getComponent()

But what if you need to instantiate a component within a method?

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Creating Prototypes

Solution A: Call getComponent()

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Creating Prototypes

Solution B: Call a factory method

Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Creating Prototypes

Planned feature: Automatically generated factory methods

Inspiring people to
shareHitchhiker's Guide to FLOW3

Caching

Inspiring people to
shareHitchhiker's Guide to FLOW3

Caching

Caching

FLOW3 comes with a generic caching mechanism

Different kinds of cache frontends (aka "Caches") are supported:

Variable cache: Caches all kinds of variables, including objects
File cache: Is optimized for caching files

Various kinds of cache backends (aka "Storages") can be used:

File backend: Store cache content in files
Memcached backend: Store cache content in memory

More frontends and backends are planned

User-defined frontends and backends can be used as well

Inspiring people to
shareHitchhiker's Guide to FLOW3

Caching

Cache Configuration Example

The component configuration is cached in Production context

This is achieved by enabling the cache in the production
configuration

Inspiring people to
shareHitchhiker's Guide to FLOW3

Caching

Cache Files Example

Inspiring people to
shareHitchhiker's Guide to FLOW3

Caching

How to Cache

Create a new cache frontend - backend pair

Configure the frontend as necessary

Store data using the frontend's API

Retrieve data using the frontend's API

Inspiring people to
shareHitchhiker's Guide to FLOW3

Caching

How to Cache

DEMO

Inspiring people to
shareHitchhiker's Guide to FLOW3

Caching

Cache Manager

Provides a registry for reusing caches

Caches are registered through the registerCache() method and can
be retrieved again by calling the getCache() method

Caching can be done without the Cache Manager, too. Registration is
not mandatory and only needed if you want to share the cache
object among different places

Inspiring people to
shareHitchhiker's Guide to FLOW3

Caching

How Use the Cache Manager

DEMO

Inspiring people to
shareHitchhiker's Guide to FLOW3

More ...

Inspiring people to
shareHitchhiker's Guide to FLOW3

More ...

Coding Guidelines

Malte and Tim create the FLOW3CGL package

CGL document will be on forge.typo3.org soon

Inspiring people to
shareHitchhiker's Guide to FLOW3

More ...

DEV3

Inspiring people to
shareHitchhiker's Guide to FLOW3

More ...

AOP Browser

Inspiring people to
shareHitchhiker's Guide to FLOW3

More ...

Known Issues

FLOW3 (or rather PHP) currently causes
Apache crashes - why ever ...

Tests consume a lot of memory
(> 400 MB)

Access is comparably slow even in
Production context (~ 3 req/s) and
needs much memory (~ 20 MB)

Many aspects are work in progress and
neither optimized nor finished

Inspiring people to
shareHitchhiker's Guide to FLOW3

Links

FLOW3 Website
http://flow3.typo3.org

TYPO3 5.0 Subsite
http://typo3.org/gimmefive

TYPO3 Forge
http://forge.typo3.org

Inspiring people to
shareHitchhiker's Guide to FLOW3

So long and thanks for the fish

Questions

