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Getting Started

Hello FLOW3!

The Hello World example based on FLOW3's 
Model-View-Controller Framework.
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Getting Started

5 Easy Steps

1. Download FLOW3

2. Adjust write permissions

3. Create a new package

4. Create a default controller

5. Create a default action



Inspiring people to
shareHitchhiker's Guide to FLOW3

Getting Started

1. Download FLOW3

Just checkout the FLOW3 distribution via
Subversion:

svn co http://svn.typo3.org/FLOW3/dist/trunk/
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Getting Started

2. Adjust write permissions

Make sure that the public folder is writeable for
the webserver's user:

sudo chown -R robert:www public/
sudo chmod -R 770 public/
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Getting Started

3. Create a package

In order to create a new package, just create
a new folder within the Packages directory.
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Getting Started

4. Create a Default Controller

1. Create a "Classes" directory

2. Create a "Controller" directory

3. Create a class file

4. Extend FLOW3's action controller
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Getting Started

5. Create Default Action
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Configuration

Configuration Format

The default configuration format is PHP

Configuration options reside in a configuration object

The configuration object provides array access and a fluent interface

Configuration options are self-documenting
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Configuration

Configuration Format
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Configuration

Configuration Types

FLOW3 distinguishes between different configuration types for 
different purposes:

FLOW3 - reserved for FLOW3 configuration

Package - package related configuration

Component - configuration for components, including 
Dependency Injection

Routes - special configuration for defining MVC routes

Settings - mainly user-level settings for any purpose
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Configuration

Configuration Types
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Configuration

The Cascade

Each package defines possible configuration options by setting 
default values

Default configuration can be altered by user-defined configuration 
files

User configuration can only modify existing configuration options

Modifying non-existent configuration options results in an error
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Configuration

Application Context

An application context is a set of configuration for a specific context

FLOW3 is shipped with configuration for these contexts:

Production

Development

Testing

Staging

FLOW3 is always launched in one defined context

Additional, user-defined contexts are possible
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Configuration

Application Context

Configuration defined in the top level of a Configuration directory is 
the base configuration

Specialized configuration for application contexts reside in 
subdirectories named after the context

Application context configuration overrides the base configuration
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Configuration

Application Context
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(or: how to launch a rocket)Bootstrap
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Bootstrap

Public/index.php

This file is the default main script

It launches FLOW3 in the Production context

The webserver's web root should point to the Public directory
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Bootstrap

Public/index_dev.php

This script is used for development

It launches FLOW3 in the Development context

More scripts like this can be created for additional contexts
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Bootstrap

Public/index_dev.php

Don't forget to run FLOW3 in Development context while you're 
developing because

component configuration is cached in production mode, so new 
classes won't be recognized

resources are cached in production mode, so changes won't be 
detected

and many more things might be cached which lead to unexpected 
errors if you change some code in your package
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Bootstrap

$FLOW3->run()

run() is a convenience method which

initializes the FLOW3 framework

resolves a request handler

handles and responses to the request



Inspiring people to
shareHitchhiker's Guide to FLOW3

Bootstrap

$FLOW3->initialize()

The initialization process is divided into different stages:

Initialize FLOW3

Initialize the packages

Initialize the components

Initialize the settings

Initialize the resources

The configuration for each level can't be changed once the initialization level is reached



Inspiring people to
shareHitchhiker's Guide to FLOW3

Packages



Inspiring people to
shareHitchhiker's Guide to FLOW3

Package Manager

Like the good old Extension Manager - but without UI yet

Scans the Packages directory for packages

Will connect to the FLOW3 Package Repository

Package file format is just plain .zip

Will provide access via Web / CLI and offer Web Services

Packages
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Packages

Meta/Package.xml

Contains meta information about a FLOW3 package

The format is defined by a RelaxNG schema:
http://typo3.org/ns/2008/flow3/package/Package.rng

The Package.xml will soon be mandatory
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Components

Components are re-usable, properly encapsulated objects

The lifecycle of a component and the combination of active 
components is managed by the Component Manager

All classes in the TYPO3 context are considered as components

Components are configurable

Components
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Class ≙ Component

Classes are automatically registered as components if

they reside in the Classes directory of a package and

their name follows the FLOW3 naming conventions

Components
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Example

Components
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Components

Playing with building blocks

The combination of components used is configurable
(orchestration)

The less components know about each other the easier it is to reuse 
them in a variety of contexts

Create your own LEGO set by creating cleanly separated, decoupled 
components!
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Components

Component Dependencies

Components seldomly come alone

Components depend on other components which depend on other 
components which ...

Problem:

Components explicitly refer to other components:
$phoneBookManager = new PhoneBookManager
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Components

Dependency Injection

A component doesn't ask for the instance of another component but 
gets it injected

This methodology is referred to as the "Hollywood Principle":
"Don't call us, we'll call you"

Enforces loose coupling and high cohesion

Makes you a better programmer
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Components

Constructor without Dependency Injection
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Components

Component with Constructor Injection
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Components

Component with Setter Injection



Inspiring people to
shareHitchhiker's Guide to FLOW3

Components

Autowiring

FLOW3's framework tries to autowire constructor arguments and 
arguments of inject* methods

The type of the component to be injected is determined by the 
argument type (type hinting)

Autowiring does not work with Setter Injection through regular 
setters (set* methods)

Dependencies are only autowired if no argument is passed explicitly
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Components

Fetching components manually

Although Dependency Injection is strongly recommended, there 
might be cases in which components need to be created or retrieved 
manually

Use the getComponent() method in these cases.

$component = $componentManager->getComponent($componentName, $arg1, $arg2, ...);
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Components

Component scope

Component objects always live in a certain scope

Currently supported scopes are:

Singleton - Only one instance exists during one script run

Prototype - Each getComponent() call returns a fresh instance
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Components

Component scope

The scope can be defined through

an annotation in the component class (recommended)

through the component configuration in a Components.php file

The default scope is "Singleton"
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Components

Component scope
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Components

Creating Prototypes

Dependency Injection can be used in almost any case, there's no 
need to call getComponent()

But what if you need to instantiate a component within a method?
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Components

Creating Prototypes

Solution A: Call getComponent()
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Components

Creating Prototypes

Solution B: Call a factory method
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Components

Creating Prototypes

Planned feature: Automatically generated factory methods
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Caching
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Caching

Caching

FLOW3 comes with a generic caching mechanism

Different kinds of cache frontends (aka "Caches") are supported:

Variable cache: Caches all kinds of variables, including objects
File cache: Is optimized for caching files

Various kinds of cache backends (aka "Storages") can be used:

File backend: Store cache content in files
Memcached backend: Store cache content in memory

More frontends and backends are planned

User-defined frontends and backends can be used as well
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Caching

Cache Configuration Example

The component configuration is cached in Production context

This is achieved by enabling the cache in the production 
configuration
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Caching

Cache Files Example
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Caching

How to Cache

Create a new cache frontend - backend pair

Configure the frontend as necessary

Store data using the frontend's API

Retrieve data using the frontend's API
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Caching

How to Cache

DEMO
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Caching

Cache Manager

Provides a registry for reusing caches

Caches are registered through the registerCache() method and can 
be retrieved again by calling the getCache() method

Caching can be done without the Cache Manager, too. Registration is 
not mandatory and only needed if you want to share the cache 
object among different places
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Caching

How Use the Cache Manager

DEMO
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More ...
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More ...

Coding Guidelines

Malte and Tim create the FLOW3CGL package

CGL document will be on forge.typo3.org soon
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More ...

DEV3
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More ...

AOP Browser
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More ...

Known Issues

FLOW3 (or rather PHP) currently causes
Apache crashes - why ever ...

Tests consume a lot of memory
(> 400 MB)

Access is comparably slow even in
Production context (~ 3 req/s) and
needs much memory (~ 20 MB)

Many aspects are work in progress and
neither optimized nor finished
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Links

FLOW3 Website
http://flow3.typo3.org

TYPO3 5.0 Subsite
http://typo3.org/gimmefive

TYPO3 Forge
http://forge.typo3.org
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So long and thanks for the fish

Questions






